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Shear-Induced Phase Changes in Mixtures 

K. D. Romig, Jr., 2 and H. J. M. Hanley 2'3 

A thermodynamic theory to account for the behavior of liquid mixtures exposed 
to a shear is developed. One consequence of the theory is that shear-induced 
phase changes are predicted. The theory is based on a thermodynamics that 
includes specifically the shear rate in the formalism and is applied to mixtures 
by a straightforward modification of the corresponding states, conformat- 
solution approach. The approach is general but is used here for a mixture of 
Lennard Jones particles with a Lennard-Jones equation of state as a reference 
fluid. The results are discussed in the context of the Scott and Van Konynenberg 
phase classification. It is shown that the influence of a shear does affect substan- 
tially the type of the phase behavior. Results from the model mixture are 
equated loosely with those from real polymeric liquids. 
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Jones fluids; mixtures; nonequilibrium molecular dynamics; nonlinear ther- 
modynamics; shear-induced phase changes. 

1. I N T R O D U C T I O N  

Shear-induced phase changes in polymer solutions have been reported, 
although they were not necessarily recognized as such. There has been no 
clear-cut explanation for the effect but often the implication is that changes 
occur only because of the complex nature of the mixture. Thirty years ago, 
however, an investigation of shear-dependent phase behavior was under- 
taken by Silberberg and Kuhn [-1 ]. They observed shear-dependent liquid- 
liquid critical-point depressions of as much as 10 K for shear rates to 
200 s-1 in polystyrene-ethyl cellulose-benzene solutions. They modeled the 
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phenomenon as a surface effect but suggested that their results required the 
modification of thermodynamic criteria for phase behavior to include 
shear, hence implying that the effect of shear on phase equilibria should be 
fundamentally the same for any system. 

Further observations of shear-dependent phase changes in polymer 
mixtures have been made by Vet Strate and Philipoff [2] and by Wolf and 
Kramer [33. Shear-dependent melting effects have also been seen in liquid 
crystals by Hermans [4] and in colloidal suspensions by Ackerson and 
Clark [5]. 

The modern explanation for a shear-induced phase change in a fluid is 
relatively straightforward [6]. If the fluid can store energy in any way, i.e., 
by a rearrangement of molecular structure or by a rearrangement of par- 
ticle distribution, then the thermodynamic stability of the fluid--and hence 
the phase behavior--must be affected. Furthermore, on the evidence of 
computer simulation [7] and the behavior of polymer solutions and 
colloidal suspensions [8], we would expect to observe nonlinear behavior, 
of which shear-induced phase changes are examples, if a product ~ >~ 10-2. 
Here ~ is a relaxation time and 7 is the shear rate. This condition appears 
to be independent of the system. One can thus study a relatively simple 
model under conditions for which z~,~> 10 -2 and scale the results to 
represent a complex system that normally would not be readily amenable 
to analysis. This is the approach taken in this paper. We give a consistent 
thermodynamic description of a sheared fluid based on nonequilibrium 
molecular dynamics (NEMD) studies of a model Lennard-Jones liquid. 
The results are applied to model binary mixtures via a modified conformal- 
solution one-fluid approach. We then argue that the subsequent con- 
clusions are relevant to a real system, such as a polymer liquid mixture. 

2. T H E R M O D Y N A M I C S  

The basis of this work is the NEMD study of Hanley and Evans [91, 
who showed that the energy of a sheared fluid is a state function of the 
shear rate at constant volume V (or density p) and temperature T (all 
quantities quoted are dimensionless): 

E=E(V,  T, 7) (1) 

Such a result led to a heuristic thermodynamics with 

dE= T d S -  p dV+ ~ d7 (2) 

where S is the entropy and ~, ~ = ~(V, T, 7), a potential given by 

~= ~ ( V ' , T ,  7) d V ' + ~ ( T ,  7) (3) 
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where (oo(T,() is the ideal-gas contribution and p is the pressure; 
p=p(V,  T, 7). 

The computer simulations show for many different model systems over 
a wide range in shear rate that the state functions follow a three-halls 
power law in 7, for example, 

E = E~q( V, T) + 73/2E~( V, T) (4) 

and 

P = Peq( V, T) + 73/Zp~( V, T) (5) 

Hanley and Evans were able to correlate E~ and p~ from the simulation 
energy and pressure data using the relationship 

(~E@p)T,, = p ,  - T ( @ @ T L ,  T (6) 

They reported an empirical expression for a compressibility factor C~ given 
by 

C~ = pr73/2/pT (7) 

The expression and its constants are given in Ref. 9 and are not repeated 
here. Given the equilibrium compressibility factor of a Lennard-Jones fluid 
[10], one has an equation of state for a Lennard-Jones fluid under shear. 
This equation is used here as a reference equation. 

Note that Eqs. (2) through (5) imply that the Helmholtz free energy A 
can be written as 

2 
/ = Meq --~ ~ ~ (8) 

where, using Eq. (7) 

~ ~ = r fo' C, ap'lp' (9) 

The thermodynamics described must predict shear-induced phase 
changes because the free energy contains a contribution from the shear, ~. 
The meaning of this term has been discussed by Evans et al. [6]. It is a 
measure of the cost in free energy required to go from one steady state to 
another at a different shear rate. This cost reflects the rearrangements in 
the fluid structure needed to allow for a change in the shear rate. This 
rearrangement of a simple fluid should be compared and contrasted with a 
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more obvious intramolecular rearrangement such as a polymer unraveling. 
It is this kind of comparison that opens up the possibility to scale shear- 
induced phenomena via a relaxation time, although the relaxing 
mechanism may be quite different from one fluid to another. 

2.1. Conformal-Solution Theory 

Hanley and Evans [-9] demonstrated that the transition of a Len- 
nard~ones gas to the liquid is suppressed by a shear and one would sus- 
pect that the shear-induced phase transitions of a mixture would be 
especially interesting and varied. As remarked, our objective is to examine 
this problem; but it cannot be done directly via simulation at this time. We 
therefore use the results for the pure fluid and apply them to a binary 
mixture following the eonformal-solution, one-fluid approach [ 11 ]. 

In classical corresponding states the properties of a fluid, i, can be 
mapped onto the properties of a reference fluid, o, by scaling with the 
ratios 

hio = (v l = ( i/Go) 3 ( 1 0 )  

f ~o = ( r~/~o) = (ei/eo) (11) 

where the superscript c indicates the critical value and a and e are the 
potential size and energy parameters, respectively. The conformal-solution 
one-fluid concept is that a mixture at a given mole fraction, x, is equivalent 
to a pseudo pure fluid, and that the pseudo fluid can also be scaled with a 
reference fluid by the ratios (10) and ( l l )  with the critical parameters 
defined by mixing rules, for example, the van der Waals mixing rules: 

hxo = Z Z xixjhg (12) 
i j 

f~o = ~ ~ xixjho- f jh~o (13) 
i j 

where the combining rules are given by 

ho = (1/8)[h~o/3 + h~3]  3 (14) 

and 

f , j=  (f~o fjo) 1/2 (15) 

The properties of the mixture can then be equated: for example, 

p( V, T, 7) = (f~o/h~o) [Peq,O( V/hxo, T/f~o) + (7/gxo) 3/2 P~,,o( V/h~o, T/f~o)] 
(16) 
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A( V, T, 7 ) = f xo [ Aeq,o( V/hxo, T/f xo) + ~ (?/gx0)~o(V/hxo, T/f xo, 7/gxo) 1 

+ N T I ~ x  ~ In x ~ - I n  h~o] (17) 
l 

We see that Eqs. (16) and (17) are modifications of very well-known 
equations but the shear rate is now included. The shear rate has to be 
scaled and we choose, based on a mixing rule for the viscosity, 

with 

where 

y ,,- [ ' l /2rn- l /2h-2/3 ~ hi/3 
gxo = E E-i~'J~,  q ""u "'ij J "xO 

i j 

mij = 2miomjo/(mio + mjo) 

(18) 

(19a) 

m~o= M]Mo (19b) 

M~ and Mo are the molecular tosses of substance i and of the reference sub- 
stance, resectively. 

2.2. The Phase Diagram 

We assume that a condition for two or more phases to be coexistent 
under shear is that the chemical potential #i of each species i be equal in 
each phase. We can then use 

#i = (OA/Oni) v.r.~ (20) 

where ni is the number of moles of i. For a binary mixture [11] 

#1 = ft -x2(c~A/c?x2)~,r,~ + P I? (21a) 

#2 : A - -  XI(OX~/OX I ) ~,r, 7 -~- pier (21b) 

where xi is the mole fraction and the circumflex refers to a quantity per 
mole. 

In summary, we wish to calculate the properties of a mixture whose 
species are characterized by the parameters ai, ei, and Mi at mole fraction 
xi at volume I 7" and temperature T under a shear rate of 7. We have the 
scaling ratios Eqs. (10)-(15) and (18) and (19). The properties follow from 
Eqs. (16) and (17), and the phase behavior follows from Eqs. (21a) and 
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(21b). The reference equation is the Lennard-Jones of Ref. 10 with the 
shear term of Hanley and Evans [9]. Expressions for the reference pressure 
and energy follow from Eqs. (5) and (7) to (9). The computational details 
are discussed in Ref. 11. 

We carried out phase-behavior calculations both at equilibrium (? = 0) 
and at various shear rates for several binary model mixtures. Such mixtures 
are defined by setting the potential, size, and mass parameters (52, 0-2, MR) 
of the more volatile component to 1.000. Thus the more volatile com- 
ponent is always taken as the reference substance. The potential and size 
parameters of the less volatile component (el, 0-1) are defined as stated 
multiples of 1.000. The less volatile component's mass parameter (M1) is 
taken as proportional to the cube of that component's size parameter. 
Results are then reported for mixtures as functions of de=el-e2 and 
Z~O" = O" 1 - -  0"  2 . 
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Fig. 1. Schematic pressure-temperature projection of vapor pressure curves ( ), critical 
loci ( . . . .  ), and LLV loci ( - - - )  for the six types (I-VI)  of binary fluid mixture phase 
behavior [13]. 
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3. RESULTS 

It is convenient to represent the phase behavior of a binary mixture 
under shear with respect to the classification of van Konynenberg and 
Scott [13]. Figure 1 gives pressure-temperature projections of typical 
critical loci and vapor pressure curves for the six phase diagrams of the 
classification. 

Figure 2 shows the predicted change in the phase diagram as a 
function of 7 and A~ for a typical series of binary mixtures, with ~Ja 
arbitrarily chosen as 0.070. Let us consider for illustration a mixture with 
LJe = 1.56. The dashed horizontal line shows that the quite complicated 
equilibrium phase behavior (Type I I I )  of this mixture is predicted to 
change drastically to a much simpler type (Type I) under the influence of a 
sufficient shear. The effect is shown more vividly in Figure 3, which is an 
isobar of that mixture's phase diagram at p = 0.356 both at equilibrium 
and at 7 = 3.10. We see that not only has the liquid-liquid phase separation 
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Fig. 2. Regions of phase diagram types as functions of intermolecular poten- 
tial difference (At) and shear rate (7) in a Lennard-Jones binary mixture for 
which Act =0.07. The dashed horizontal line at At = 1.56 shows how the 
phase diagram can change with shear. 
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Fig. 3. Calcula ted  phase  d i ag ram at p = 0 . 3 5 6  for the L e n n a r d - J o n e s  binary 
mix ture  Ae = 1.56, Aa  = 0.07 at  equi l ibr ium ( ) and  at 7 = 3.10 ( . . . .  ). 

disappeared under shear, but the vapor-liquid phase separation has nearly 
disappeared as well. 

Finally, let us make a very rough comparison between our results, 
based on a computer simulation, and a real system. We calculated the 
liquid-liquid phases at a pressure of 0.005, chosen to represent 
approximately an atmospheric pressure, for a Type II mixture of equal- 
sized particles (A~=0) with Ae= 1.000 at equilibrium and at ~=0.20, 
respectively. The observed shear-dependent change of the consolute tem- 
perature is A T= 0.08. As noted above, Silberberg and Kuhn [1 ] recorded 
changes in consolute temperature as high as 10 K for shear rates of the 
order of 102 s-1 for a polymer mixture. These authors suggested that their 
system had a relaxation time of 10 -3 s. Now the relaxation time for the 
Lennard-Jones mixture is of the order of 10-1. Thus, the T7 products are of 
similar orders of magnitude for both systems. A scaling parameter for the 
temperature of a polymer system (e.g., critical temperature) would have a 
value of the order of 103 K. If this is multiplied by A T  we find that 
ATu .... ~cd is of the order 10 K. Although we recognize that this polymer 
behavior cannot be modeled directly by the simple two-body potentials 
used in this work and in spite of the very preliminary nature of the above 
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comparison, the result lends support to the theory developed here and 
suggests strongly the connection between the phase behavior predictions 
for simple systems and the data for more complicated systems such as 
polymer mixtures. 

4. CONCLUSIONS 

We have discussed shear-dependent phase behavior of fluid mixtures 
in terms of the principle of corresponding states and a one-fluid ther- 
modynamic model. We predict that a sufficient shear could affect 
significantly the fluid phase behavior of mixtures. Shear has been 
demonstrated to suppress liquid-liquid phase separation and to enlarge a 
mixture's homogeneous region. Finally, the predicted shear effect on the 
phase behavior of a model mixture has been shown to scale very 
approximately as the observed shear effect on the phase behavior of a 
polymer mixture. As a word of caution: when calculating the phase 
diagrams presented, we have assumed as a limiting case that the coexisting 
phases have the same shear rate; also, in principle the diagrams depend on 
the mixing rules proposed and, most importantly, on the particular choice 
of reference equation of state that was established for Couette flow. 
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